La revolución CubeSat y la exploración espacial

Andrés Marcos (anmarcos@ing.uc3m.es)

Aerospace Engineering department: https://aero.uc3m.es/

Master in Space Engineering (MISE): https://www.uc3m.es/master/space-engineering

Universidad Carlos III de Madrid (UC3M)

Brief Speaker CV

Andrés Marcos

Expert on application & transfer of robust control techniques to aerospace systems

Education (9 years): Aerospace Eng.: BSc'97 (St. Louis U., USA), MSc'01 & PhD'04 (U. of Minnesota, USA)

Academic Experience (13 years): 2 yrs as Post-Doctoral RA (University Leicester, UK, 2004-2006)

7 yrs as Senior Lecturer (University of Bristol, UK, 2013-2020)

4 yrs as Distinguished Investigator / Chair of Excellence (Universidad Carlos III de Madrid, ES, 2021→)

Industrial Experience (12 years): 6 months as Industrial Research Fellow (Honeywell Labs, USA, 2003)

8 yrs from Senior Engineer to R&D Leader (Deimos Space, Spain, 2006-2013)

3 yrs as SME founder & scientific director (TASC Ltd, UK, 2020 → 2023)

Past projects

25+ years' experience leading aerospace control R&D

My PhD thesis was on aircraft FDI/FTC

RECONFIGURE Jan 2013-Jun 2016

I proposed & led

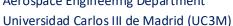
With high-impact results

One of the ADDSAFE teams further consolidated their technique up to in-service deployment on Airbus A350 XWB

In VISION, several FDI/FTC techniques were pilot-flight tested first time in the World mine: Structured H_∞ Control

From TRL 3
industry-developed, high-fidelity, nonlinear, simulators

To TRL 6/8 → flight tests: piloted & remotely operated



2016-2019: Flight and Aircraft-In-the-Loop tests of advanced FTC controllers in JAXA's Multi-Purpose Aviation Laboratory-αircraft (MuPAL-α) in Tokyo.

Current position

"Beatriz Galindo" Distinguished Senior Investigator

Aerospace Engineering Department

Personal 5-year talent-attraction award from Spanish Government to:

- Coordinate activities in academic-industry chair ST3LLAR
- Establish CubeSat development program at UC3M
- Develop advanced control & AI/ML techniques for aerospace systems

Director of UC3M's:

Master in Space Engineering, MISE

Center of Satellite Technology, CSAT

CubeSat Program, ST3LLARsat

Q1. What is the name of the first satellite sent up by humanity?

Q2. Name at least one company in Spain that makes CubeSats?

Q3. Name at least one Spanish University that has launched a CubeSat?

Q4. How much is the (typical) weight of a CubeSat?

- A. < 1 Kg
- **B.** 1-10 Kg
- C. 10-50 Kg
- D. >100 Kg

Q5. How long can be the side of a CubeSat?

- A. 5 cms
- **B.** 10 cms
- C. 30 cms
- D. 80 cms

Q6. What is the (typical) orbit altitude for a CubeSat?

- A. 10-100 Km
- **B.** 100-300 Km
- C. 300-600 Km
- D. 600-900 Km

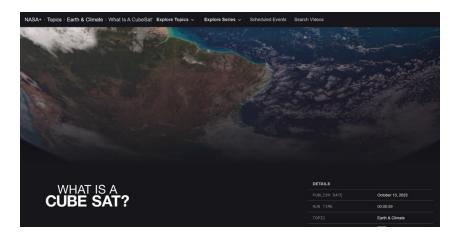
Q7. What is the (typical) maximum travelling speed of a CubeSat?

- A. 300 km/h
- B. 3,0000 km/h
- C. 30,000 km/h
- D. 300,000 km/h

Q8. How many CubeSats have been launched into space?

- **A.** <1,000
- **B.** 1,000-3,000
- **C.** 3,000-6,000
- D. >6,000

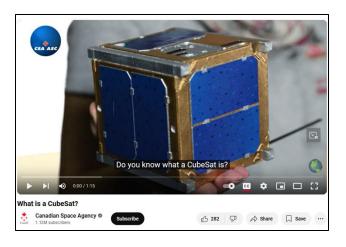
Q9. What is the success rate of a CubeSat program/launch?


- A. < 30 %
- B. 30-50 %
- C. 50-70 %
- D. > 70 %

What is a CubeSat?

What is a CubeSat? Some nice videos

NASA - What is a CubeSat [59s]


https://www.youtube.com/watch?v=HZMiJ Q47qk https://plus.nasa.gov/video/what-is-a-cubesat-2/

Canadian Space Agency (CSA) – What is a CubeSat? [1m15s]

https://www.youtube.com/watch?v=x7MmleXu7Dc

https://www.asc-csa.gc.ca/eng/multimedia/search/video/18450?search=cubesat

European Space Agency (ESA) Euronews [8m30s]

- CubeSat, a satellite in a shoe box:

https://www.youtube.com/watch?v=w-7qkInt3Jl

What is a CubeSat? Definitions

CubeSat

https://en.wikipedia.org/wiki/CubeSat

Article Talk

From Wikipedia, the free encyclopedia

A **CubeSat** is a class of small satellite with a form factor of 10 cm (3.9 in) cubes.^[1] CubeSats have a mass of no more than 2 kg (4.4 lb) per unit,^[2] and often use commercial off-the-shelf (COTS) components for their electronics and structure. CubeSats are deployed into orbit from the International Space Station, or launched as secondary payloads on a launch vehicle.^[3] As of December 2023, more than 2,300 CubeSats have been launched.^[4]

What is a nanosatellite?

https://www.nanosats.eu/cubesat

In mass-classification and in strict terms, a <u>nanosatellite</u> (nanosat, nano-satellite) is any satellite with mass from 1 kg to 10 kg. In this database, "nanosatellite" covers all CubeSats, PocketQubes, TubeSats, SunCubes, ThinSats and non-standard picosatellites, unless otherwise stated.

All are part of the same CubeSat revolution and modern electronics technology leap. Limiting to 1-10 kg would be confusing and troublesome. 1U CubeSat can be 0.8 kg, but also 1.3 kg. 6U can be less or more than 10 kg. Most masses are not public.

Upper limit in this database is 10 kg for non-standard types of nanosats and 27U CubeSat (30-40 kg). Lower limit is 1p PocketQubes and custom picosatellites over 100 g and SunCubes that can be less than 100 g.

What is a CubeSat? Classifications

https://en.wikipedia.org/wiki/Small_satellite

Group name ^[1]	Mass (kg)
Extra Heavy satellite	> 7,000
Heavy satellite	5,001 to 7,000
Large satellite	4,201 to 5,000
Intermediate satellite	2,501 to 4,200
Medium satellite	1,201 to 2,500
Small satellite	601 to 1,200
Mini satellite	201 to 600
Micro satellite	11 to 200
Nano satellite	1.1 to 10
Pico satellite	0.1 to 1
Femto satellite	<0.1

https://www.nanosats.eu/cubesat

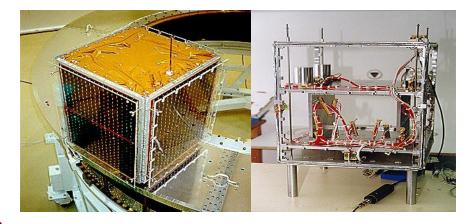
Satellite mass classification

- Large satellites: >1000 kg
- Medium satellites: 500 to 1000 kg
- Small satellites: < 500 kg
 - Minisatellites: 100 to 500 kg
 - Microsatellites: 10 to 100 kg
 - o Nanosatellites: 1 to 10 kg
 - o Picosatellites: 100 g 1 kg
 - ∘ Femtosatellites: 10 g 100 g
 - o Attosatellites: 1 g 10 g
 - o Zeptosatellites: 0.1 g 1 g
- CubeSat sizes:
 - o From 0.25U to 27U
 - From ~0.2 kg to ~40 kg

Small satellite (smallsat) is any satellite below 500 kg. This term should be used rarely, there can be large differences between sizes and capabilities.

What is a CubeSat? Spanish 1st Pocket/Nano/Micro-Sats

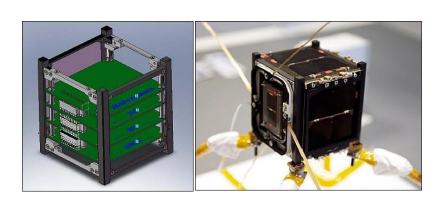
A CubeSat is any picosat < nanosat < microsat of up to ~50kg / 27U


Polytechnic University of Madrid's 1st MicroSat: UPM-SAT 1 (100U, 47Kg)

Launched 7th July 1995: https://www.idr.upm.es/en/upmsat-1

UPM-SAT 1 is not a CubeSat: 45x45x55 cms / 47Kg while a CubeSat is maximum of: 30x30x30 cms / 50Kg

The CubeSat definition might seem arbitrary,


but it is driven by capacity of **CubeSat deployers** (currently up to 27U).

University of Vigo's 1st NanoSat: XaTcobeo (1U, <1Kg)

Launched 13th Feb 2012: https://www.xatcobeo.com/

https://www.eoportal.org/satellite-missions/xatcobeo-cubesat-mission

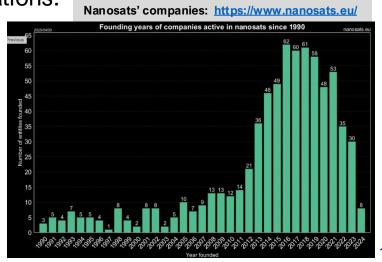
FOSSA Systems' 1st OS PocketQube:

FOSSAsat1 (0.5U, <0.5Kg)

Launched 6th Dec 2019

https://fossa.systems/our-history/

What is a CubeSat? Beginnings


The CubeSat standard was created in 1999 by

California Polytechnic State University, San Luis Obispo (prof. Jordi Puig-Suari)

and Stanford University's Space Systems Development Lab (prof. Bob Twiggs)

to facilitate access to space for university students.

- Since then, it has become a worldwide standard.
- CubeSat developers include not only universities and educational institutions,
 but also private firms and government organizations.
- The CubeSat-SmallSat segment is one of the fastest growing segments in the aerospace industry (NewSpace).

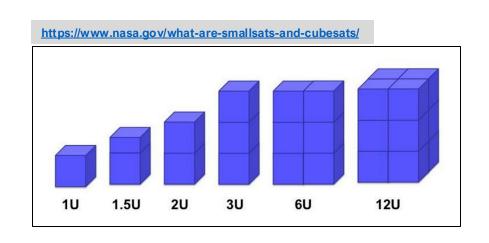
What is a CubeSat? A Standard Description

- The CubeSat is a **standardized** satellite characterized by:
 - Cube Modular Size: 10cmX10cmX10cm cube (known as 1U)
 - Mass per cube: of not more than 1.33 kg (but sometimes defined as <2Kg)
 - Functionalities: all basic functionalities for a research satellite

STR, EPS, OBC, SW/OBDH, TT&C + ADCS, THR, PAY + AIVT, MGT, BDGT, LAW

CubeSats are scalable

by grouping multiple 1U frames

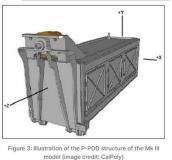

into larger configurations:

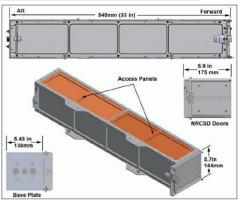
3U: 10x10x30 cms

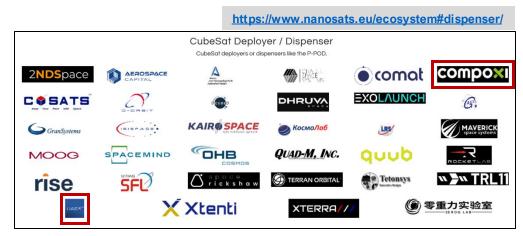
6U: 10x20x30 cms

12U: 20x20x30 cms

27U: 30x30x30 cms

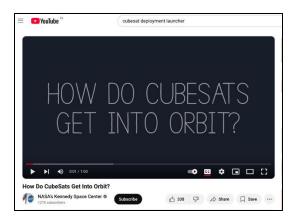

What is a CubeSat? How are they launched?


Two ways:


Distribuidor

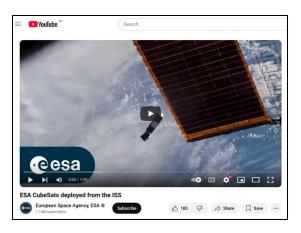
- Direct Launcher deployment: Piggyback on launcher within a CubeSat Deployer
- 2. From ISS: taken to ISS and released via CubeSat Deployer (or by hand, not often)
- CubeSats Deployers are special containers designed to carry CubeSats:
 - CalPoly's P-Pod: up to 3U (i.e. 3x1U, 1x1U+1x2U, 1x3U)
 - ISIS' ISIPOD: tailored for 1U, 2U, or 3U
 - NanoRacks CubeSat Deployer (NRCSD): for ISS, up to16U payloads

https://www.eoportal.org/other-space-activities/cubesat-concept#CubeSatDeployers.html.33



What is a CubeSat? How are they launched?

- Two ways:
 - 1. Direct Launcher deployment: Piggyback on launcher within a CubeSat Deployer
 - 2. From ISS: taken to ISS and released via CubeSat Deployer (or by hand, not often)

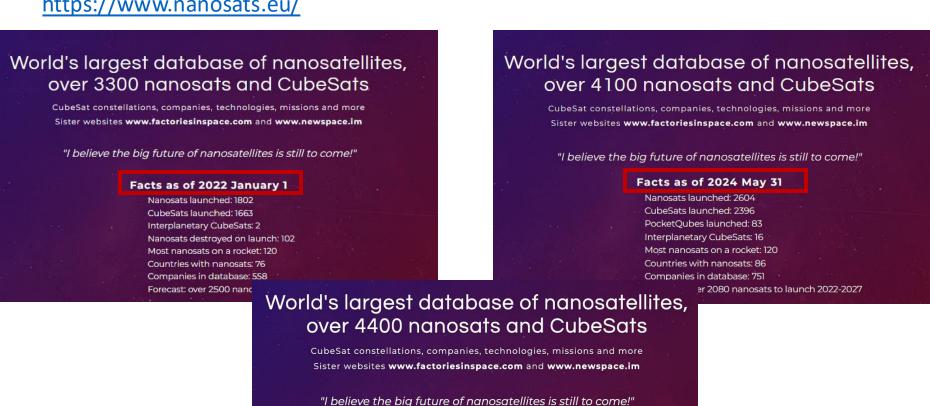

NASA - How Do Cube Sats Get Into Orbit? [1m]

https://www.youtube.com/watch?v=pnRdlyIWI0k

ESA Cube Sats deployed from the ISS [1m9s]

https://www.youtube.com/watch?v=-m4iNiNFFto

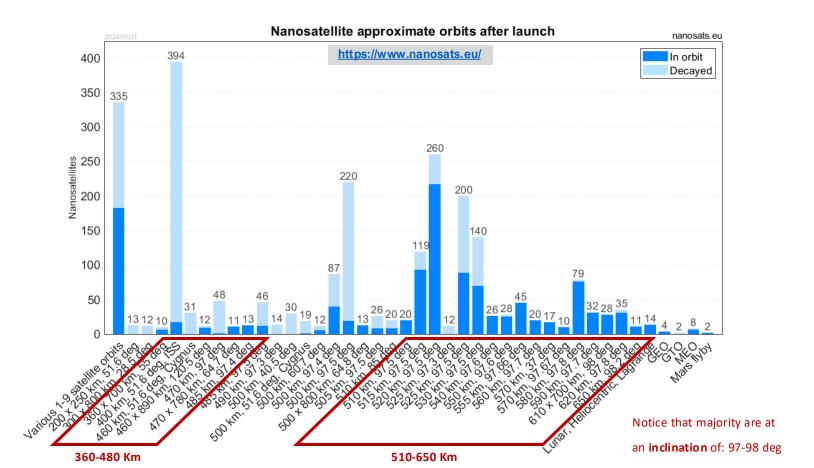
CubeSat hits space station solar array 'mildly' after spacewalker deploys it [2m28s]


https://www.youtube.com/watch?v=zfl42B3nWr0

What is a CubeSat? How many are out there?

Depending how you count, between **4,000-5,000** as of May 2024 (since 1999)

https://www.nanosats.eu/


Facts as of 2025 April 30 Nanosats launched: 2956 CubeSats launched: 2730 PocketQubes launched: 95 Interplanetary CubeSats: 18 Most nanosats on a rocket: 120 Countries with nanosats: 91 Companies in database: 786

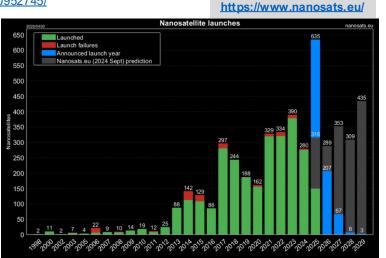
Forecast: 1900 nanosats to launch 2024-2029

17

What is a CubeSat? What are the typical orbits?

- Most CubeSats are deployed in mid of Low-Earth-Orbit (LEO):
 - Period of <128 minutes & Eccentricity of <0.25
 - Mean altitude of ~800 Km (maximum of 2,000 Km = 1/3 Earth radius)
 - Mean orbital speed to maintain a stable LEO orbit is about 7.8 km/s (~28,000 km/h)

What is a CubeSat? How difficult is it to do one?


Since 1999:

- Of an estimated 29,000 universities in the World, only ~200 have launched one.
- ~50% 1st time CubeSats fail (to reach orbit, cancelled during development, do not respond).
- It is a learning experience (failure rate for 2nd attempt of a school/university is 20-25%).
- Average time range for developing a 1st CubeSat program is 5-7 years.

References:

- A. Marcos, A. Ponche "ST3LLARsat1 "BOIRA": Establishing the first student CubeSat program at UC3M," EDULEARN'23, Palma (Spain) https://library.iated.org/view/MARCOS2023ST3
- M Betancourt "Half of All First-Time CubeSat Projects End in Failure," Smithsonian's Air & Space Magazine https://www.smithsonianmag.com/air-space-magazine/cubesats-are-great-even-if-they-die-you-180952745/

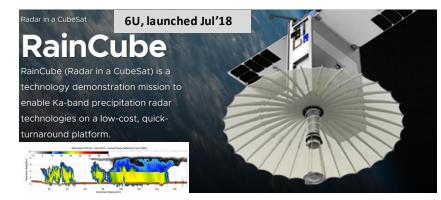
S.A. Jacklin "Small-Satellite Mission Failure Rates," NASA/TM-2018-220034 https://ntrs.nasa.gov/api/citations/20190002705/downloads/20190002705.pdf

What is a CubeSat? What can we do with it?

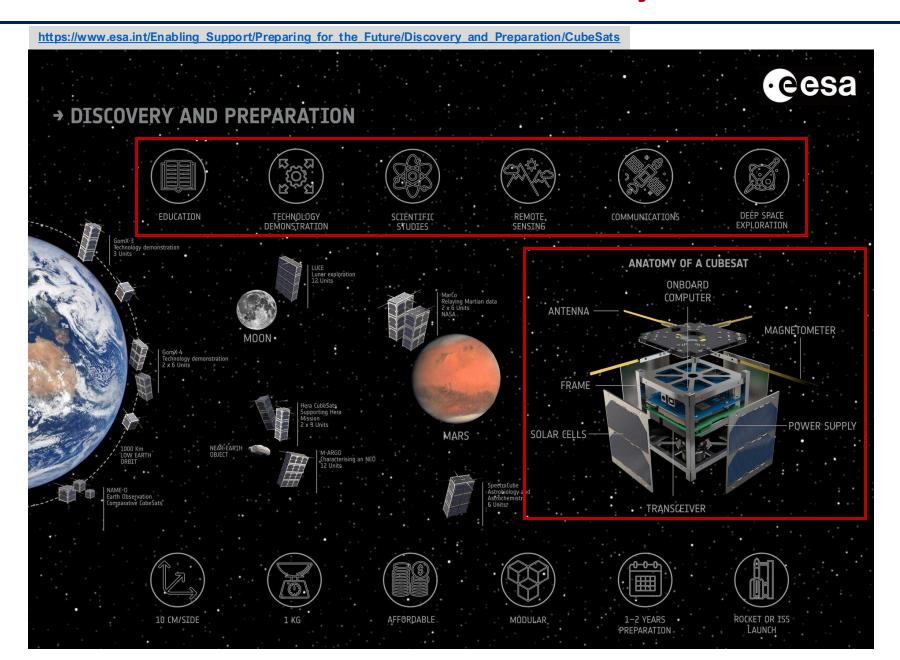
• Almost anything:

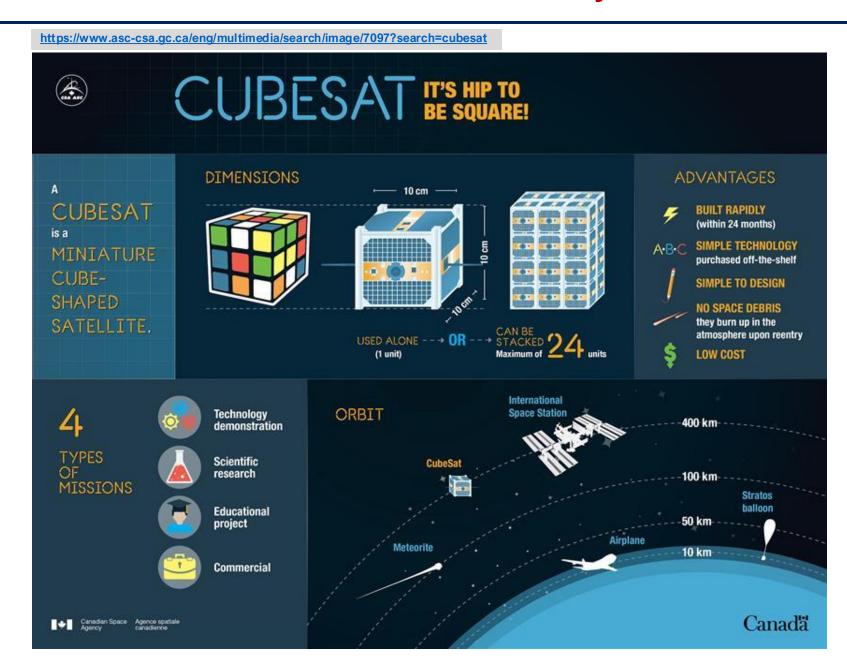
- Earth monitoring
- Astrophysics
- Telecommunications
 - Commercial
- Technology demonstration

Temporal Experiment for Storms and Tropical Systems - Demonstration


TEMPEST-D

TEMPEST-D was a technology demonstration mission to enable millimeter wave radiometer technologies on a low-cost, short development schedule.


https://www.jpl.nasa.gov/missions/?mission_type=CubeSat/SmallSat



What is a CubeSat? A Visual Summary - ESA

What is a CubeSat? A Visual Summary - CSA

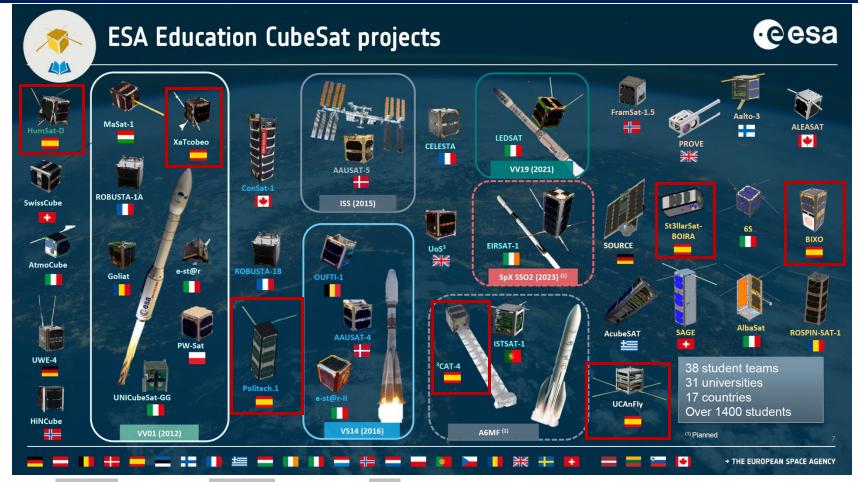
CubeSat Programmes

CubeSat Programmes: First & Institutional

The Original Idea, CalPoly https://www.cubesat.org/

NASA

https://www.nasa.gov/directorates/heo/home/CubeSats_initiative



ESA

https://www.esa.int/Education/CubeSats - Fly Your Satellite/About Fly Your Satellite!

CubeSat Programmes: ESA Education – FYS program

Uvigo: XaTcobeo (1U, Feb'12), HumSat-D (1U, Nov'13), BIXO (2U, started Nov'20 / expected end-26)

UPC: 3CAT-2 (**2U**, Aug'16), 3CAT-1 (**1U**, Nov'18), FSSCat (**6U**, Sept'20), 3CAT-4 (**1U**, started 2017 / Jul'24)

UPM: Qbito (2U, Apr'18)

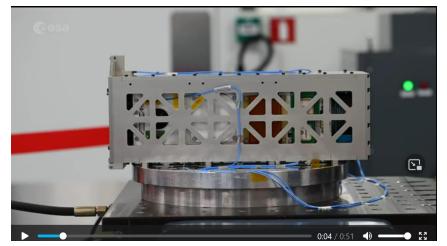
UCadiz: UCAnFLy (1U, started 2018 / expected 2025)

UValencia: Polytech.1 (3U, started 2016? or Jan'22, cancelled)

UC3M: ST3LLARsat1 "BOIRA" (2U, started Sept'22 / expected mid-27)

CubeSat Programmes: ESA Education – FYS program

https://www.esa.int/Education/CubeSats - Fly Your Satellite/CubeSat Support Facility



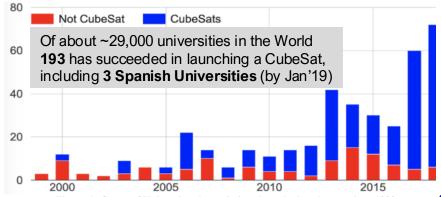
The CubeSat Support Facility (CSF) is an assembly integration and testing facility for CubeSats, located at the ESA Education Training Centre, based at the ESEC-Galaxia facility in Transinne, Belgium. Its purpose: offer training and test facilities for university students that are part, or aiming to be part, of ESA's educational CubeSat initiatives such as 'Fly Your Satellite!'.

The CSF is primarily used by teams participating in ESA Academy's Fly Your Satellite! CubeSat Programme, but in the near future there will be additional innovative courses offered to help university students to learn about environmental testing with hands-on activities and lectures from experts.

SOURCE CubeSat

CubeSat Programmes: Universities

From the "Resources" at NASA SSRO Knowledge Base: https://s3vi.ndc.nasa.gov/ssri-kb/topics/4/

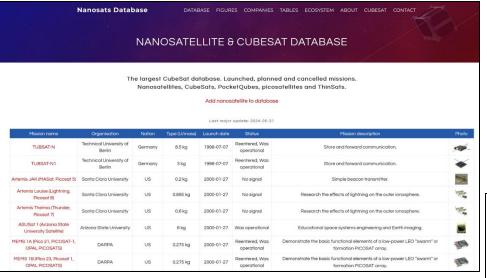

	School	Nation	First Launch	Total
1	University of Melbourne	Australia	1/23/1970	1
2	University of Surrey	UK	10/6/1981	4
3	Weber State	USA	4/29/1985	3
4	Technical University of Berlin	Germany	7/17/1991	15
5	Korean Advanced Institute of Science and Technology	South Korea	8/10/1992	4
6	University of Bremen	Germany	2/3/1994	1
7	National University of Mexico	Mexico	3/28/1995	2
8	Technion Institute of Technology	Israel	3/28/1995	2
9	Universidad Politécnica de Madrid	Spain	7/7/1995	2
10	Russian high school students	Russia	10/5/1997	1
11	US Air Force Academy	USA	10/25/1997	6
12	ESTEC	Europe	10/30/1997	4
13		US		
14	University of Alabama-Huntsville	USA	10/24/1998	2
15	Naval Postgraduate School	USA	10/29/1998	2
16	University of Stellenbosch	South Africa	2/23/1999	2
17	Arizona State University	USA	1/27/2000	2
18	Stanford University	USA	1/27/2000	3
19	Santa Clara University	USA	2/10/2000	3
20	Tsinghua University	China	6/28/2000	4

•	SA SSRO	INIOW	icage	ים י
21	King Abdulaziz City for Science & Technology	Saudi Arabia	9/26/2000	11
22	University of Rome "La Sapienza"	Italy	9/26/2000	10
23	Umeå University / Luleå University of Technology	Sweden	11/21/2000	1
24	US Naval Academy	USA	9/30/2001	8
25	Aalborg University	Denmark	6/30/2003	5
26	Technical University of Denmark	Denmark	6/30/2003	2
27	Tokyo Institute of Technology	Japan	6/30/2003	5
28	University of Tokyo	Japan	6/30/2003	8
29	UTIAS (University of Toronto)	Canada	6/30/2003	4
30		Brazil	8/22/2003	1
31	Mozhaiskiy Space Engineering Academy	Russia	9/27/2003	2
32	New Mexico State University	USA	12/21/2004	1
33	Norweigan Universities	Norway	10/27/2005	2
34	University of Würzburg	Germany	10/27/2005	4
35	Bauman Moscow State Technical University	Russia	7/26/2006	2
36	Cal Poly	USA	7/26/2006	14
37	Cornell University	USA	7/26/2006	5
38	Hankuk Aviation University	South Korea	7/26/2006	1
39	Montana State University			9
40	Nihon University	Japan	7/26/2006	4
41	Politecnico di Torino	Italy	7/26/2006	3
42	University of Arizona	USA	7/26/2006	2
43	University of Hawaii	USA	7/26/2006	3
44	University of Illinois	USA	7/26/2006	4
45	University of Kansas	USA	7/26/2006	1

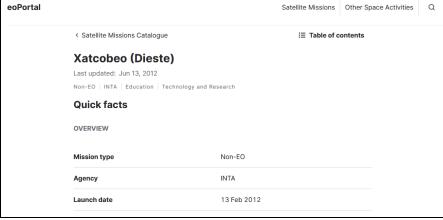
63	University Space Engineering Consortium	Japan	5/20/2010	1
64	Waseda University	Japan	5/20/2010	2
65	Indian university consortium	India	7/12/2010	1
66	Scuola universitaria della Svizzera italiana	Switzerland	7/12/2010	1
67	University of Michigan	USA	11/20/2010	7
68	University of Southern California	USA	12/8/2010	1
69	Colorado Space Grant Consortium	USA	3/4/2011	3
70				
71	M.V. Lomonosov Moscow state university	Russia	4/20/2011	1
72	Nanyang Technological University	Singapore	4/20/2011	8
73	Indian Institute of Technology Kanpur	India	10/12/2011	1
74	Auburn University	USA	10/28/2011	1
75	Utah State University	USA	10/28/2011	2
76	Budapest University of Technology and Economics	Hungary	2/13/2012	1
77	University of Bologna	Italy	2/13/2012	1
78	University of Bucharest	Romania	2/13/2012	1
79	University of Montpellier II	France	2/13/2012	2
	University of Vigo	Spain	2/13/2012	3

	_	-		
130	College of Engineering, Pune	India	6/22/2016	1
131	Sathyabama University	India	6/22/2016	
132	Shaanxi Engineering Laboratory	China	6/25/2016	
133	Universidad Politécnica de Cataluña	Spain	8/15/2016	
124	IIT Bombay	India	9/26/2016	
134	III Dollioay	maia	,	

190	New Mexico Institute of Mining and Technology	US	12/16/2018	1
191	West Virginia University	US	12/16/2018	1
192	North Idaho STEM Charter Academy	US	12/16/2018	1
193	Space Kidz	INDI	1/24/2019	1


CubeSat Programmes: Databases

Several databases available listing all missions/platforms:


https://www.nanosats.eu/

https://space.skyrocket.de/ (Gunter's Space Page)


https://www.eoportal.org/

CubeSat Programmes: Platforms & Mission Services

Platforms: Alen Space, EMXYS, Hydra Space, SATLANTIS

Subsystems: Aistech, Alter Tech., Anteral, Arquimea, Balamis, BHDynamics, Comet Ingeniería, Compoxi, DHV Tech., FOSSA Systems, IENAI Space, Karten Space, Kreios Space,

Prosix Eng., Radian Systems, Sateliot, SLIMOp Space, UARX, VALAR, Xiroi

CubeSat Basics

CubeSat Basics: Design Specification Documents

Always, always read & refer to the CubeSat spec-docs.

- The most well-known and detailed are:
 - CalPoly's:

DesignSpecification_CalPoly_rev13_final.pdf

<u>DesignSpecification CalPoly rev14 July2020.pdf</u>

<u>CubesatInterfaceFitProcedure CalPoly rev02W 2020.pdf</u>

NASA's 101:

DesignSpecification Cubesat101 NASA2017.pdf

ESA (https://emits.sso.esa.int > emits-doc > ESTEC >):
 AO8352_AD1_IOD_CubeSat_ECSS_Eng_Tailoring_Iss1_Rev1-2.pdf
 IOD CubeSat ECSS Eng Tailoring Iss1 Rev3-2.pdf (24/11/2016)

See also other docs at: https://www.cubesat.org/cubesatinfo

CubeSat Basics: Functionalities

Functionalities: all basic functionalities of a standard satellite

STR, EPS, OBC, SW/OBDH, TT&C + ADCS, THR, PAY + AIVT, MGT, BDGT, LAW

STR – structure

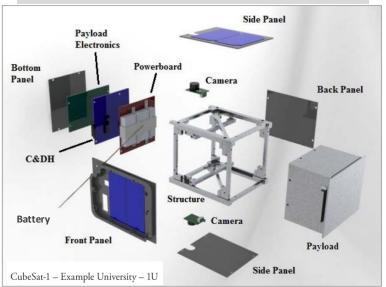
EPS – power (battery, solar panels, powerboard)

OBC – onboard computer

SW/OBDH – software / onboard data handling

TT&C – telecommunication

ADCS – attitude determination & control system

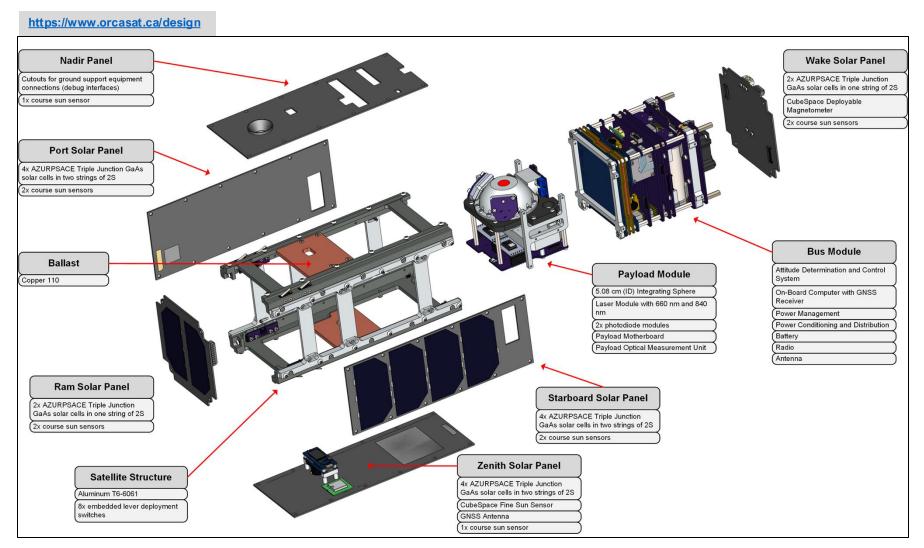

THR - thermal

PAY – payload (science and/or technology)

AIVT – assembly, integration, validation, and testing

MGT, BDGT, LAW – management, budget, regulations

https://www.nasa.gov/wpcontent/uploads/2017/03/nasa csli cubesat 101 508.pdf


https://nanoavionics.com/blog/cubesat-101-the-comprehensive-guide-to-understanding-satellite-technology/

CubeSat Basics: Subsystems

Functionalities: all basic functionalities of a standard satellite

STR, EPS, OBC, SW/OBDH, TT&C + ADCS, THR, PAY + AIVT, MGT, BDGT, LAW

CubeSat Basics: Team Roles

Functionalities: all basic functionalities of a standard satellite
 STR, EPS, OBC, SW/OBDH, TT&C + ADCS, THR, PAY + AIVT, MGT, BDGT, LAW

Kiril A. Dontchev, Kartik Ghorakavi, Cameron E. Haag, Thomas M. Liu., Rafael Ramos, "M-Cubed: University of Michigan Multipurpose MiniSatellite with Optical Imager Payload," 1999 ASEE Annual Conference

https://www.researchgate.net/publication/240615366 M-Cubed University of Michigan Multipurpose MiniSatellite with Optical Imager Payload

Project Manager

Systems

Payload

Structures

Orbits & Controls

Power & Electrical

Telemetry

Command & Data Handling

Figure 1. Organizational structure of M-Cubed

Bruce C. Chesley, Michael J. Caylor, "Developing an Integrated Curriculum for Small Satellite Engineering" 1999 ASEE Annual Conference

 $\frac{https://s3vi.ndc.nasa.gov/ssri-kb/static/resources/developing-an-integrated-curriculum-for-small-satellite-engineering.pdf$

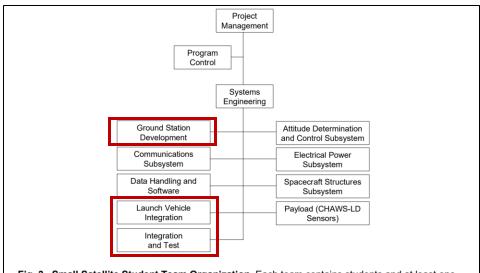


Fig. 3. Small Satellite Student Team Organization. Each team contains students and at least one faculty mentor. The program control function includes scheduling, budgeting, contracting, and configuration management.

CubeSat Basics: Typical Development Process

Functionalities: all basic functionalities of a standard satellite
 STR, EPS, OBC, SW/OBDH, TT&C + ADCS, THR, PAY + AIVT, MGT, BDGT, LAW

NASA CubeSat 101: Basic Concepts and Processess for First-Time CubeSat Developers

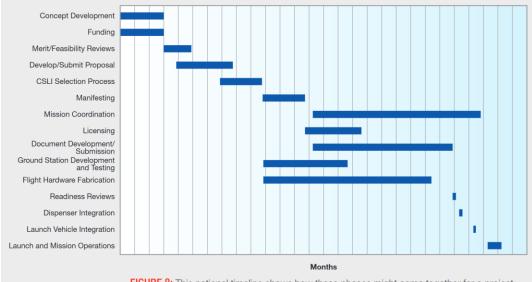


FIGURE 8: This notional timeline shows how these phases might come together for a project.

https://www.esa.int/Education/CubeSats_-_Fly_Your_Satellite/Current_programme_Phases

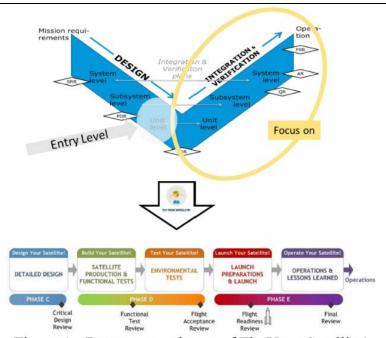


Figure 1 - Programme phases of Fly Your Satellite!

CubeSat Basics: General Advice

Functionalities: all basic functionalities of a standard satellite
 STR, EPS, OBC, SW/OBDH, TT&C + ADCS, THR, PAY + AIVT, MGT, BDGT, LAW

NASA CubeSat 101: Basic Concepts and Processess for First-Time CubeSat Developers

> FREE ADVICE

KEEP EXCELLENT RECORDS OF EVERYTHING YOU DO. It is incredibly important to keep great records of the work your team has been doing. These records should be in the form of photographic evidence and thorough documentation. This is especially important for student organizations that will be losing senior team members as they graduate. Keeping records helps continuity within the project; you'll avoid "reinventing the wheel" over and over again.

> FREE ADVICE

KEEP IT SIMPLE. Keep the design as simple as possible. CDS requirements are on the conservative side. The CDS prohibits pyrotechnics, and discourages a host of other cool stuff. Some violations would be unacceptable, but some may be waived or approved on a mission-by-mission basis. You will, however, be eligible for more launches if you adhere to these specifications. Things like a propulsion system may make the launch provider or their primary payload nervous, and some just choose not to carry CubeSats that have them. So CSLI may still select your CubeSat for launch but it may take longer to find a willing launch provider to give you a ride.

>FREE ADVICE

FLEXIBILITY IS KEY. Keep your mission as flexible as possible. CSLI may select your CubeSat mission because it has some great science goals, but that doesn't guarantee you'll get a launch right away. If you need special considerations like a very specific orbit or specific launch date, finding a launch could be tricky. Do your best to keep your requirements for launch as flexible as possible.

>FREE ADVICE

DEVELOPMENT TESTING. "Test like you fly" is a common mantra for CubeSat developers and applies to more than just final environmental testing. During electronic development, use evaluation and development kits and **breadboard** components before fabricating boards. Once the printed circuit boards (PCBs) are produced, test as many expected functions as possible before interfacing it with other systems. Keep the scope small with testing and add components systematically, testing them along the way. Never assume that boards or subsystems that work well during standalone testing will work well when integrated with other boards or subsystems.

During mechanical development, it is useful to do thermal and vibration tests on individual subsystems prior to integrating all components. This often catches design issues early on and reduces over-test on the overall system.

DID YOU KNOW?

What's the IARU?

The International Amateur Radio Union (IARU) is an international agency run by volunteers who are based in countries around the world, who coordinate what group will be allowed to use which radio frequencies in the amateur band. As you can imagine, lots of people are transmitting for various reasons all day, everyday. To avoid transmissions interfering with each other by using the same frequency, IARU keeps track of which amateur frequencies are available and assigns the unused bands upon request. That's why the FCC requires CubeSat developers to contact the IARU for an amateur frequency assignment before an RF license can be processed.

For an amateur license, the FCC will need the following:

- IARU coordination letter
- Satellite orbital debris mitigation compliance document (discussed in Chapter 6)
- SpaceCap notice: the SpaceCap software can be downloaded from http://www.itu.int)
- · Prelaunch notification letter with general mission and satellite information

CubeSat Basics: And to finish 1st part of the class ...

University of Victoria (Canada) – ORCASat Final Assembly:

https://www.orcasat.ca/updates/final-assembly-time-lapse

RG SAT – Building a CubeSat for less than \$1000
Part 1 -- It should be possible

https://www.youtube.com/watch?v=m8TSiKHZbC8

