Gedinamica Planetaria

¢, Como funcionan los planetas
por dentro?
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Manto terrestre en conveccién

Modelos numéricos de conveccion termoquimica  Ballmer et al., 2015



las que se oponen.

7

conveccion y

v ©
o
c
©C o
O @
mr
/uo
= >
S $8
n o
o D
o T
Q
S &
g
ST
O 5
ef
c U
v ®©
> o
g &
@
DO
nw c
c ©
5 @®©
e
T C
Ou
= 0
wm
> S
o °
O o
3 <
c .©
n 9
O >
— (@©
W




El nUmero de Rayleigh de un sistema se define como:

o, pgb°AT
KN

Ra =

o, = coeficiente de expansion térmica
p = densidad
g = aceleracion de la gravedad

b = Espesor de la capa
AT = Diferencia de temperatura entre el techo y la base de la capa

k = Coeficiente de difusion térmica
n = Viscosidad



Convecion en una capa casi isoviscosa:
El material se encuentra muy bien mezclado. No hay capas que definan (limiten)
térmicamente el techo y la base del sistema.
No define un sistema real en un cuerpo planetario
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Convecion en una capa con un contraste moderado de viscosidades:
Se general capas limites claras a techo y base de la capa en conveccion.
La capa limite superior (litosfera) participa en la conveccion.

Se tendria reciclaje de la litosfera y tectonica de placas.
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Convecion en una capa con fuerte contraste de viscosidades:Se genera una capa
limite superior muy gruesa e inmovil que no participa en la conveccion.
No hay tectonica de placas

0.0 0.2 0.4 0.6 0.8 1.0
Temperature



Asi, el contraste de viscosidades a travées del manto determina como se comporta
un planeta deberiamos obtener su posicion el el diagrama.
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Regimenes convectivos
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Regimenes convectivos
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Regimenes convectivos

Mobile Lid Cold Stagnant Hot Stagnant
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Moresi y Solomatov (1998)



Debilidad en las placas litosféricas calientes
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Marte

Colinas Columbia, Crater Gusev



La Tierra y Marte a escala. Aunqgue Marte es mucho mas pequenfio, el
tamafno de sus estructuras tectonicas rivaliza con el de la Tierra. En se
aprecia el Valles Marineris, que puede compararse con las dimensiones

del Mar Rojo o el Golfo de Aden.




The Interior of Mars

Mantle
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Seismic signal from SEIS, NASA InSight
Deng & Levander, 2020
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Topografia de Marte (Smith et al., 1999, 2001)
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Marte presenta una dicotomia topografica. Se puede diferenciar claramente

entre tierras bajas al norte y tierras altas al sur, con una diferencia de altura

media de varios kilbmetros. Las tierras bajas presentan una superficie lisa,
mientras que las altas son mucho mas rugosas y craterizadas.



(Parro et al., 2017)
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Marte tambien presenta una dicotomia en cuanto al espesor de su
corteza, que basicamente es equivalente a la dicotomia en altitudes, con
corteza relativamente delgada en las tierras bajas y gruesa en las tierras

altas.



Cuencas de impacto enterradas
en las tierras altas del norte de
Marte

30w, 50N

(Frey et al., 2002)



La presencia en el norte de una gran cantidad de cuencas enterradas nos

indica que el basamento de Marte tiene una gran antigliiedad en todas las

regiones, y no hay evidencias claras de una renovacion importante de la
corteza a lo largo de su historia.
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Region de
Tharsis

Tharsis contiene alguna de las mayores estructuras tectonicas (como el
Valles Marineris o la “cordillera” de Thaumasia) y volcanicas (como el
Olympus Mons o los Montes de Tharsis) de Marte.
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Tectdnica en Marte

Estructuras extensionales (rojo)
Estructuras compresivas (verde)
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r————p—— Modelo Digital del Terreno de Warrego Scarp
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Kilémetros Proyeccion Cilindrica Equidistante

“Cordillera” de Thaumasia, de hasta 4 km de altura sobre el nivel medio (en la zona de
Warrego). Los procesos que la originaron no se comprenden bien. Su borde sur se encuentra
sefialado por un frente de grandes fallas inversas, y es cortado a su través por la fosas
Coracis, que han sido interpretadas por algunos autores como un sistema de rifts marciano.



Entre las estructuras compresivas Marte también
presenta grandes fallas inversas como
Amenthes Rupes
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La mision se la NASA Insigth ha puesto recientemente un sismografo sobre la
superficie de Marte, y ya ha obtenido las primeras sefales de terremotos
marcianos, que indican que este planeta preserva alguna activa en la actualidad (las
grandes estructuras tectonicas son muy antiguas).

S50235b event, distance: 1,530 km

magnitude: 3.6
o i

S50105a event, distance: 1,700-1,900 km
magnitude: 3.2

88 x10 " m
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(Banerdt et al., 2020)



Localizacion de la prodedencia de los dos mayores terremotos marcianos
registrados hasta la fecha, provienentes de la region conocida como Cerberus,
donde se observan dos depresiones limitadas por fallas conocidas como Fosas

Cerbero.

(Giardini et al.,
2020)




Galaxias Fossae
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Cerberus Fossae
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(Banerdt et al., 2020)
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Imagen obtenida por la sonda Pioner Venus en 1979



Proyeccion esférica de las imagenes de radar mas la topografia
obtenidas por la sonda Magallanes entre 1990-1994
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Superficie de Venus

Venera 14 (1982)

- Condiciones en superficie: T=477°C, P=90 atm
- Ausencia de H,O — escasa erosion
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Mapa de Radar de la superficie de Venus




Mapa de Radar de la superficie de Venus

Ishtar Terra




Principales unidades geologicas en Venus
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¢Esta la litosfera de Venus fragmentada?

Artemis Chasma




¢Hay zonas de subduccion
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¢, Como pierde Venus el
calor interno?
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¢ Qué ocurrio hace 300-750 Ma?
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Plateaus corticales y terrenos de tessera

Ovda regio
Alpha regio



Estructuras tectonicas en terrenos de tesseras
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Graben



Fortuna Tessera

(b) Map view (ground range image)
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Evolucion tectonica de los terrenos de tessera
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BDT deepens with time



Ovda Regio
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 thrust fault % anticline \ graben

Romeo y Capote (2011)



— External plains Crustal plateau

Romeo y Capote (2011)



.Y si se trata de continentes?

N\, Complex graben [] Continental crust [] Basaltic crust

"\ Intratessera volcanic plain [ Lithospheric mantle [] Hot mantle

Romeo y Turcotte (2008)
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